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How can we detect



What is Quantum Field Theory (QFT) about?

The mathematical formalism does not allow for strictly localised particles

• Halvorson and Clifton 2002: “It is a widespread belief, at least within the 
physics community, that there is no relativistic quantum theory of 
(localizable) particles; and, thus, that the only relativistic quantum theory is a 
theory of fields.”

• Kuhlmann 2010: “Although it seems undeniable that modern physics is to a 
large extent making theories and experiments involving particles it is this 
very interpretation which has the most fully developed arguments against it.”
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But...?
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Overview

• “Particle Phenomenology without a Particle Ontology” 
(Arageorgis, Stergiou 2013)

• Several proposals in literature: Wallace, Halvorson and Clifton, Haag, 
Buchholz and others

• Wallace, Halvorson and Clifton rely on assumption of free theories

• AQFT approach considers scattering theory and concerns asymptotic 
particle content of theories

• However, it seems that the asymptotic particle content is dependent on a 
choice of detectors – this is a new form of underdetermination
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Outline

1. No localisation in 
relativistic QFTs

2. Proposals by Wallace, 
and Halvorson and 
Clifton

3. Asymptotic Detector 
Patterns

4. It’s all about the 
detectors!
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1. No localisation 
in relativistic 
QFTs



• Relativistic quantum field theory: Operators are tied to spacetime regions

• 𝜙 𝑥 , 𝜋 𝑥 for „Lagrangian QFT“

• 𝒪 ↦ 𝒜 𝒪 for „Algebraic QFT“ (with the “quasi-local algebra” 𝒜 = ⋃ 𝒜 𝒪𝒪 )

• No-Go theorems by Malament (1996), Halvorson and Clifton (2002) 
establish that there cannot be systems of projection operators 
implementing propositions about particle positions

• Reeh-Schlieder theorem shows that there cannot be non-zero operators 
localised in a bounded region, that are zero in the vacuum

No-Go Theorems
1. No localisation for relativistic QFTs



2. Proposals by 
Wallace, and 
Halvorson and 
Clifton



• ”Lagrangian QFT”:
• Basic ontological commitment: expectation values of the field operators  𝜙 𝑥 , 𝜋(𝑥) tell us 

about field excitations around 𝑥 of the system in a state

• Assume we are dealing with a free theory with a mass gap*

• Effective Localisation:
• We shall call a state |𝜓⟩ effectively localised in spatial region 𝚺𝒊 iff for all functions 𝑓መ of 

the field operators we have that

i.e. the excitations differ substantially more from the vacuum inside Σ௜ than in its space-like 
complement Σ′௜

Wallace: Effective Localisation
2. Proposals by Wallace, and Halvorson and Clifton

* Mass gap: the spectrum of the mass operator 𝑀 = 𝑃ఓ𝑃ఓ

భ

మ is bounded from below by some 𝜆଴ > 0



Halvorson and Clifton: Almost local 
observables

• Shift focus to particle detectors:

• Positive observables 𝐶 ∈ 𝒜(𝒪) such that 𝐶 Ω = 0

• However, this is not possible due to Reeh-Schlieder theorem

• Solution: choose 𝐶 ∈ 𝒜 to be almost local, which means they can be 
approximated by local operators but need not be in any 𝒜(𝒪)

• Almost local operators: 𝐶 ∈ 𝒜 such that ∀𝜀 > 0∃𝐶௥ ∈ 𝒜 𝒦௥ ∶ ‖𝐶 − 𝐶௥‖ < 𝜀

• While we measure strictly local observables, we can approximate the 
almost local operators

• |𝜓⟩ is a localised particle state iff ∃𝐶 ∈ 𝒞: 𝜔(𝐶) > 0

2. Proposals by Wallace, and Halvorson and Clifton



3. Asymptotic 
Detector Patterns



Particles in „Local Quantum Physics“

• Particle detectors: 𝐶 ∈ 𝒜 positive, almost local and annihilates the vacuum 
state: 𝜔଴ 𝐶 = 0, call the collection of particle detectors 𝒞
• Measurements do correspond to observables

• Within measurement error bounds there will be enough local and almost local 
observables; we neither know nor care (Haag, 1996) what the exact correspondence is

• Detector arrangements
Denote by 𝛼௫ ∶ 𝒜 → 𝒜 the automorphism implementing spacetime-translations, 
where 𝑥 ∈ ℝସ

𝐷௡ ≔ 𝛼௫భ
𝐶ଵ ⋯ 𝛼௫೙

𝐶௡ for 𝑥௜ = (𝑡, 𝒙𝒊) and |𝒙𝒊 − 𝒙𝒋 | > 𝑅

3. Asymptotic Detector Patterns



Particles in „Local Quantum Physics“

• Call a state 𝜔 at most 𝐧-fold localised at time 𝐭 iff it cannot trigger any 
(𝑛 + 1)-fold detector arrangement, i.e. for any choice of the 𝐶௜ ∈ 𝒞

∫ 𝜔 𝛼௫భ
𝐶ଵ ⋯ 𝛼௫௡ାଵ

(𝐶௡ାଵ)
௫೔ି௫ೕ வோ

𝑑ଷ𝒙𝟏 … 𝑑ଷ𝒙𝒏ା𝟏 < 𝜀, 

where 𝒙𝒊 = (𝑡, 𝑥௜) and 𝜀 is a chosen background tolerance

• If 𝜔 has no component that is less than 𝑛-fold localised, we can call 𝜔
exactly n-fold localised

3. Asymptotic Detector Patterns



Particles in „Local Quantum Physics“

• We are now interested in asymptotic particle configurations, i.e. the 
weak limit points of the state 𝜔 for asymptotic times:

lim
௫బ→±ஶ

  𝜔 𝛼௫ 𝐶 , for 𝐶 ∈ 𝒞

• Haag and Araki (1967) show, assuming a mass gap, that these limits 
converge weakly to states of the full algebra which are „permanently 
localised“

3. Asymptotic Detector Patterns



Generalisation to Particle Weights
• Buchholz then showed that this can be generalised to theories without a mass 

gap (e.g. QED) by restricting the class of detectors 𝒞 further:
• Particle detectors are 𝐶 ∈ 𝒜 that are positive, almost local and annihilate all states with 

energy below some set threshold 𝛿 – call this class of detectors 𝒞ఋ

• The resulting 𝒞ఋ is a non-unital subalgebra of 𝒜
(which is also not norm-closed, but closed in a suitable topology generated by a family of semi-norms)

• The limit elements

lim
௫బ→±ஶ

𝜔 𝛼௫ 𝐶   , for 𝐶 ∈ 𝒞ఋ

cannot be extended to a state on all of 𝒜 anymore, the limits are well-defined 
only on 𝒞ఋ . Instead of states, the limit functionals are called particle weights

3. Asymptotic Detector Patterns



Generalisation to Particle Weights

• Via the GNS construction, using particle weights instead of states, one 
can construct representations of 𝒞ఋ which can be then extended to 
representations of 𝒜
(which are unitarily equivalent to the vacuum representation of 𝒜, when restricted to 
subalgebras of finite regions)

• These representations can be attributed a sharp momentum and spin
• This is similar to constructing single particle Hilbert spaces using representations of 

the Poincaré group

• One can then decompose particle weights into pure particle weights, again 
paralleling the decomposition of group representations into irreducible 
representations

3. Asymptotic Detector Patterns



Summary – Asymptotic Particles in AQFT

1. Define a class of particle detectors 𝒞

2. Consider equal-time detector arrangements where the distances 
between detectors are chosen suitably:

3. 𝐷௡ ≔ 𝛼௫భ
𝐶ଵ ⋯ 𝛼௫೙

𝐶௡ for 𝑥௜ = (𝑡, 𝒙𝒊) and |𝒙𝒊 − 𝒙𝒋 | > 𝑅

4. Let 𝑡 → ±∞ and consider the limits of the expectation values of the 
arrangements

5. This is then the asymptotic particle content of an arbitrary (not 
necessarily free!) state

3. Asymptotic Detector Patterns



Summary – Asymptotic Particles in AQFT
For theories with a mass gap, this recovers the usual picture with an 
asymptotic space and

• A Fock space representation

• One-particle subspaces given by irreps of the Poincaré group (Wigner’s 
construction)

For theories without a mass gap, we get a particle weight

• A representation via the GNS construction of the particle weight that can 
be extended to a full algebra-representation

• A decomposition into pure weights, mirroring the decomposition into irreps

3. Asymptotic Detector Patterns



4. It’s all about 
the detectors!



Underdetermination of asymptotic particles
• The asymptotic particle content arising from 𝜔 depend on the choice of 

the class of detectors
• E.g., in non-mass-gap cases: choice of 𝛿 determines which “soft particles” 

show up as proper localisation centres of the asymptotic state

• If asymptotic configurations are not full states, then expectation values of 
certain elements of 𝒜 might not be well-defined

• The content of the theory captured by the mathematical apparatus, 
given in terms of 𝒪 ↦ 𝒜(𝒪) and the state of the system at finite times 𝜔, 
does not uniquely fix the asymptotic particle content

• Conversely, it is unclear whether the asymptotic particle content can fix 
a unique class of detectors, even given the full theory

4. It’s all about the detectors!



Underdetermination of asymptotic particles

• All this seems to be yet further evidence that QFT cannot be given an underlying 
ontology in terms of particles – not even in the supposedly ”nice” case of scattering 
theory!

• Simply assuming free theories in the asymptotic limit (as done by Wallace) obscures 
this situation

• Unclear how many possible choices of detector subalgebras. If several, what could be 
criteria to prefer one over the other?

4. It’s all about the detectors!



Summary

• No-go theorems show that there cannot be 
localisable particles in relativistic Quantum 
Theories

• Several attempts to bring this together with 
the appearances of particles in HEP 
experiments

• Construction in AQFT takes scattering theory 
directly into account

• Asymptotic particles are not uniquely 
determined by just the net of algebras and 
state of the field at finite times; a choice of a 
class of particle detectors is involved
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Thank you!


