

## How can we detect Localised Particles in Quantum Field Theory

Alexander Niederklapfer

DPG Frühjahrstagung Bonn 2025 - AGPhil



THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

## What is Quantum Field Theory (QFT) about?

Intro

The mathematical formalism does not allow for strictly localised particles

- Halvorson and Clifton 2002: "It is a widespread belief, at least within the physics community, that there is no relativistic quantum theory of (localizable) particles; and, thus, that the only relativistic quantum theory is a theory of fields."
- Kuhlmann 2010: "Although it seems undeniable that modern physics is to a large extent making theories and experiments involving particles it is this very interpretation which has the most fully developed arguments against it."

# Intro **But...?**



Lucas Taylor / CERN

Fermilab

#### Intro Overview

- "Particle Phenomenology without a Particle Ontology" (Arageorgis, Stergiou 2013)
- Several proposals in literature: Wallace, Halvorson and Clifton, Haag, Buchholz and others
- Wallace, Halvorson and Clifton rely on assumption of free theories
- AQFT approach considers scattering theory and concerns asymptotic particle content of theories
- However, it seems that the asymptotic particle content is dependent on a choice of detectors – this is a new form of underdetermination

#### Intro Outline

- 1. No localisation in relativistic QFTs
- 2. Proposals by Wallace, and Halvorson and Clifton
- 3. Asymptotic Detector Patterns
- 4. It's all about the detectors!





### 1. No localisation in relativistic QFTs

#### 1. No localisation for relativistic QFTs

### **No-Go Theorems**

- Relativistic quantum field theory: Operators are tied to spacetime regions
  - $\phi(x), \pi(x)$  for "Lagrangian QFT"
  - $\mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$  for "Algebraic QFT" (with the "quasi-local algebra"  $\mathcal{A} = \bigcup_{\mathcal{O}} \mathcal{A}(\mathcal{O})$ )
- No-Go theorems by Malament (1996), Halvorson and Clifton (2002) establish that there cannot be systems of projection operators implementing propositions about particle positions
- Reeh-Schlieder theorem shows that there cannot be non-zero operators localised in a bounded region, that are zero in the vacuum



2. Proposals by Wallace, and Halvorson and Clifton

#### 2. Proposals by Wallace, and Halvorson and Clifton

### Wallace: Effective Localisation

- "Lagrangian QFT":
  - Basic ontological commitment: expectation values of the field operators  $\phi(x), \pi(x)$  tell us about field excitations around x of the system in a state
  - Assume we are dealing with a free theory with a mass gap\*
- Effective Localisation:
  - We shall call a state |ψ⟩ effectively localised in spatial region Σ<sub>i</sub> iff for all functions f̂ of the field operators we have that

$$\left. \langle \psi | \hat{f} | \psi 
angle - \langle \Omega | \hat{f} | \Omega 
angle 
ight|_{x \in \Sigma_i} \gg \left. \langle \psi | \hat{f} | \psi 
angle - \langle \Omega | \hat{f} | \Omega 
angle 
ight|_{x \in \Sigma'_i}$$

i.e. the excitations differ substantially more from the vacuum inside  $\Sigma_i$  than in its space-like complement  $\Sigma'_i$ 

\* Mass gap: the spectrum of the mass operator  $M = (P^{\mu}P_{\mu})^{\frac{1}{2}}$  is bounded from below by some  $\lambda_0 > 0$ 

#### 2. Proposals by Wallace, and Halvorson and Clifton

# Halvorson and Clifton: Almost local observables

- Shift focus to particle detectors:
  - Positive observables  $C \in \mathcal{A}(\mathcal{O})$  such that  $C|\Omega\rangle = 0$
  - However, this is not possible due to Reeh-Schlieder theorem
  - Solution: choose C ∈ A to be almost local, which means they can be approximated by local operators but need not be in any A(O)
    - Almost local operators:  $C \in \mathcal{A}$  such that  $\forall \varepsilon > 0 \exists C_r \in \mathcal{A}(\mathcal{K}_r) : ||C C_r|| < \varepsilon$
  - While we measure strictly local observables, we can approximate the almost local operators
  - $|\psi\rangle$  is a *localised particle state* iff  $\exists C \in C: \omega(C) > 0$



### **Particles in "Local Quantum Physics"**

- Particle detectors:  $C \in \mathcal{A}$  positive, almost local and annihilates the vacuum state:  $\omega_0(C) = 0$ , call the collection of particle detectors C
  - Measurements do correspond to observables
  - Within measurement error bounds there will be enough local and almost local observables; we neither know nor care (Haag, 1996) what the exact correspondence is

#### Detector arrangements

Denote by  $\alpha_x : \mathcal{A} \to \mathcal{A}$  the automorphism implementing spacetime-translations, where  $x \in \mathbb{R}^4$ 

$$D_n \coloneqq \alpha_{x_1}(C_1) \cdots \alpha_{x_n}(C_n)$$
 for  $x_i = (t, x_i)$  and  $|x_i - x_j| > R$ 

### **Particles in "Local Quantum Physics"**

• Call a state  $\omega$  at most n-fold localised at time t iff it cannot trigger any (n + 1)-fold detector arrangement, i.e. for any choice of the  $C_i \in C$ 

$$\int_{|x_i-x_j|>R} \omega \left( \alpha_{x_1}(C_1) \cdots \alpha_{x_{n+1}}(C_{n+1}) \right) d^3 x_1 \dots d^3 x_{n+1} < \varepsilon,$$

where  $x_i = (t, x_i)$  and  $\varepsilon$  is a chosen background tolerance

• If  $\omega$  has no component that is less than *n*-fold localised, we can call  $\omega$  **exactly n-fold localised** 

### **Particles in "Local Quantum Physics"**

• We are now interested in asymptotic particle configurations, i.e. the weak limit points of the state  $\omega$  for asymptotic times:

 $\lim_{x^0 \to \pm \infty} \omega(\alpha_x(\mathcal{C})), \quad \text{for } \mathcal{C} \in \mathcal{C}$ 

 Haag and Araki (1967) show, assuming a mass gap, that these limits converge weakly to states of the full algebra which are "permanently localised"

### **Generalisation to Particle Weights**

- Buchholz then showed that this can be generalised to theories without a mass gap (e.g. QED) by restricting the class of detectors C further:
  - Particle detectors are  $C \in \mathcal{A}$  that are positive, almost local and annihilate all states with energy below some set threshold  $\delta$  call this class of detectors  $C_{\delta}$
- The resulting  $C_{\delta}$  is a non-unital subalgebra of A(which is also not norm-closed, but closed in a suitable topology generated by a family of semi-norms)
- The limit elements

 $\lim_{x^0\to\pm\infty}\omega\bigl(\alpha_x(\mathcal{C})\bigr)\ ,\ \text{for}\ \mathcal{C}\in\mathcal{C}_\delta$ 

cannot be extended to a state on all of  $\mathcal{A}$  anymore, the limits are well-defined only on  $\mathcal{C}_{\delta}$ . Instead of states, the limit functionals are called **particle weights** 

### **Generalisation to Particle Weights**

• Via the GNS construction, using particle weights instead of states, one can construct representations of  $\mathcal{C}_{\delta}$  which can be then extended to representations of  $\mathcal{A}$ 

(which are unitarily equivalent to the vacuum representation of  $\mathcal{A}$ , when restricted to subalgebras of finite regions)

- These representations can be attributed a sharp momentum and spin
  - This is similar to constructing single particle Hilbert spaces using representations of the Poincaré group
  - One can then decompose particle weights into pure particle weights, again paralleling the decomposition of group representations into irreducible representations

### **Summary – Asymptotic Particles in AQFT**

- 1. Define a class of particle detectors  $\ensuremath{\mathcal{C}}$
- 2. Consider equal-time detector arrangements where the distances between detectors are chosen suitably:

3. 
$$D_n \coloneqq \alpha_{x_1}(C_1) \cdots \alpha_{x_n}(C_n)$$
 for  $x_i = (t, x_i)$  and  $|x_i - x_j| > R$ 

- 4. Let  $t \to \pm \infty$  and consider the limits of the expectation values of the arrangements
- 5. This is then the asymptotic particle content of an arbitrary (not necessarily free!) state

### **Summary – Asymptotic Particles in AQFT**

For theories with a mass gap, this recovers the usual picture with an asymptotic space and

- A Fock space representation
- One-particle subspaces given by irreps of the Poincaré group (Wigner's construction)
- For theories without a mass gap, we get a particle weight
- A representation via the GNS construction of the particle weight that can be extended to a full algebra-representation
- A decomposition into pure weights, mirroring the decomposition into irreps



# 4. It's all about the detectors!

#### 4. It's all about the detectors!

### **Underdetermination of asymptotic particles**

- The asymptotic particle content arising from ω depend on the choice of the class of detectors
  - E.g., in non-mass-gap cases: choice of  $\delta$  determines which "soft particles" show up as proper localisation centres of the asymptotic state
  - If asymptotic configurations are not full states, then expectation values of certain elements of  $\mathcal{A}$  might not be well-defined
- The content of the theory captured by the mathematical apparatus, given in terms of  $\mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$  and the state of the system at finite times  $\omega$ , **does not uniquely fix** the asymptotic particle content
- Conversely, it is unclear whether the asymptotic particle content can fix a unique class of detectors, even given the full theory

#### 4. It's all about the detectors!

### **Underdetermination of asymptotic particles**

- All this seems to be yet further evidence that QFT cannot be given an underlying ontology in terms of particles – not even in the supposedly "nice" case of scattering theory!
- Simply assuming free theories in the asymptotic limit (as done by Wallace) obscures this situation
- Unclear how many possible choices of detector subalgebras. If several, what could be criteria to prefer one over the other?

#### **Summary**

- No-go theorems show that there cannot be localisable particles in relativistic Quantum Theories
- Several attempts to bring this together with the appearances of particles in HEP experiments
- Construction in AQFT takes scattering theory directly into account
- Asymptotic particles are not uniquely determined by just the net of algebras and state of the field at finite times; a choice of a class of particle detectors is involved



#### References

- Araki, H. and R. Haag (1967). "Collision cross sections in terms of local observables". In: *Communications in Mathematical Physics* 4.2, pp. 77–91.
- Buchholz, D. (1995). On the manifestations of particles. arXiv: hep-th/9511023.
- Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras. 2nd ed. Springer.
- Halvorson, H. and R. Clifton (2002). "No Place for Particles in Relativistic Quantum Theories?" In: *Philosophy of Science* 69.1, pp. 1–28.
- Kuhlmann, M. (2010). The Ultimate Constituents of the Material World. In Search of an Ontology for Fundamental Physics. Berlin, Boston: De Gruyter.
- Malament, D. (1996). "In Defense of Dogma Why there cannot be a relativistic quantum mechanics of (localizable) particles". In: *Perspectives on Quantum Reality*. Ed. by R. Clifton. Kluwer, pp. 1–10.
- Wallace, D. (2001). Emergence of particles from bosonic quantum field theory. arXiv:quant-ph/0112149.
- Wallace, D. (2006). "In Defence of Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory". In: *Synthese* 151.1, pp. 33–80.



## Thank you!

