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What is Quantum Field Theory (QFT) about?

The mathematical formalism does not allow for strictly localised particles

« Halvorson and Clifton 2002: “It is a widespread belief, at least within the
physics community, that there is no relativistic guantum theory of
(localizable) particles; and, thus, that the only relativistic quantum theory is a
theory of fields.”

« Kuhlmann 2010: “Although it seems undeniable that modern physics is to a
large extent making theories and experiments involving particles it is this
very interpretation which has the most fully developed arguments against it.”
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But




Overview

« “Particle Phenomenology without a Particle Ontology”
(Arageorgis, Stergiou 2013)

« Several proposals in literature: Wallace, Halvorson and Clifton, Haag,
Buchholz and others

« Wallace, Halvorson and Clifton rely on assumption of free theories

« AQFT approach considers scattering theory and concerns asymptotic
particle content of theories

 However, it seems that the asymptotic particle content is dependent on a
choice of detectors - this is a new form of underdetermination
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1. No localisation
in relativistic

QFTs




No-Go Theorems

Relativistic quantum field theory: Operators are tied to spacetime regions
« ¢(x),(x) for ,Lagrangian QFT*
* 0 A(0) for ,Algebraic QFT* (with the “quasi-local algebra” A4 = U, A(0))

No-Go theorems by Malament (1996), Halvorson and Clifton (2002)
establish that there cannot be systems of projection operators
iImplementing propositions about particle positions

Reeh-Schlieder theorem shows that there cannot be non-zero operators
localised in a bounded region, that are zero in the vacuum



2. Proposals by
Wallace, and

Halvorson and
Clifton




Wallace: Effective Localisation

« "Lagrangian QFT”:

« Basic ontological commitment: expectation values of the field operators ¢(x), m(x) tell us
about field excitations around x of the system in a state

« Assume we are dealing with a free theory with a mass gap*

» Effective Localisation:

« We shall call a state |y) effectively localised in spatial region %, iff for all functions f of
the field operators we have that

wifw) — (@IflD)| > wiflv) - @ fie)

i.e. the excitations differ substantially more from the vacuum inside X; than in its space-like
complement ¥’;

ey
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* Mass gap: the spectrum of the mass operator M = (P”PM)2 is bounded from below by some 4, > 0



Halvorson and Clifton: Almost local
observables

« Shift focus to particle detectors:
« Positive observables C € A(0) such that C|Q) =0
However, this is not possible due to Reeh-Schlieder theorem

Solution: choose C € A to be almost local, which means they can be
approximated by local operators but need not be in any A(0)

« Almost local operators: C € A such that ve > 03C, € A(K,) : ||C — C,|| < &

While we measure strictly local observables, we can approximate the
almost local operators

|Y) is a localised particle state iff 3C € C: w(C) > 0



3. Asymptotic
Detector Patterns




Particles in ,,Local Quantum Physics*

- Particle detectors: C € A positive, almost local and annihilates the vacuum
state: wy,(C) = 0, call the collection of particle detectors C
 Measurements do correspond to observables

« Within measurement error bounds there will be enough local and almost local
observables; we neither know nor care (Haag, 1996) what the exact correspondence is

« Detector arrangements

Denote by a, : A - A the automorphism implementing spacetime-translations,
where x € R*

Dy = ay (C1) - ay, (Cy) for x; = (¢, x;) and |x; —x; | > R



Particles in ,,Local Quantum Physics*

« Call a state w at most n-fold localised at time t iff it cannot trigger any
(n + 1)-fold detector arrangement, i.e. for any choice of the C; € C

3 3
flxi—xj|>R w(ax1 (Cl) axn+1(Cn+1)) d>xq ... A°Xp4q <&,
where x; = (t,x;) and ¢ is a chosen background tolerance

* |If w has no component that is less than n-fold localised, we can call w
exactly n-fold localised



Particles in ,,Local Quantum Physics*

« We are now interested in asymptotic particle configurations, i.e. the
weak limit points of the state w for asymptotic times:

lim w(a,(C)), for C € C

x9—>+00

« Haag and Araki (1967) show, assuming a mass gap, that these limits
converge weakly to states of the full algebra which are ,permanently
localised”



Generalisation to Particle Weights

« Buchholz then showed that this can be generalised to theories without a mass
gap (e.g. QED) by restricting the class of detectors ¢ further:
* Particle detectors are C € A that are positive, almost local and annihilate all states with
energy below some set threshold § — call this class of detectors Cg

« The resulting Cs is a non-unital subalgebra of A
(which is also not norm-closed, but closed in a suitable topology generated by a family of semi-norms)

 The limit elements

lim w(ax(C)) , for C € Cg

x0—>+400

cannot be extended to a state on all of A anymore, the limits are well-defined
only on Cs. Instead of states, the limit functionals are called particle weights



Generalisation to Particle Weights

« Via the GNS construction, using particle weights instead of states, one
can construct representations of Cs which can be then extended to

representations of A

(which are unitarily equivalent to the vacuum representation of A4, when restricted to
subalgebras of finite regions)

* These representations can be attributed a sharp momentum and spin

» This is similar to constructing single particle Hilbert spaces using representations of
the Poincaré group

« One can then decompose particle weights into pure particle weights, again
paralleling the decomposition of group representations into irreducible
representations



Summary - Asymptotic Particles in AQFT

1. Define a class of particle detectors ¢

2. Consider equal-time detector arrangements where the distances
between detectors are chosen suitably:

3. Dn = C(xl(Cl) C(xn(Cn) for X = (t, xl-) and |x,- — Xj | > R

4. Lett - +o0 and consider the limits of the expectation values of the
arrangements

5. This is then the asymptotic particle content of an arbitrary (not
necessarily free!) state



Summary - Asymptotic Particles in AQFT

For theories with a mass gap, this recovers the usual picture with an
asymptotic space and

* A Fock space representation

* One-particle subspaces given by irreps of the Poincaré group (Wigner’s
construction)

For theories without a mass gap, we get a particle weight

« A representation via the GNS construction of the particle weight that can
be extended to a full algebra-representation

« A decomposition into pure weights, mirroring the decomposition into irreps



4. It’s all about
the detectors!




Underdetermination of asymptotic particles

* The asymptotic particle content arising from w depend on the choice of
the class of detectors

* E.g., in non-mass-gap cases: choice of § determines which “soft particles”
show up as proper localisation centres of the asymptotic state

« If asymptotic configurations are not full states, then expectation values of
certain elements of A might not be well-defined

* The content of the theory captured by the mathematical apparatus,
given in terms of 0 » A(0) and the state of the system at finite times w,
does not uniquely fix the asymptotic particle content

« Conversely, it is unclear whether the asymptotic particle content can fix
a unique class of detectors, even given the full theory



Underdetermination of asymptotic particles

« All this seems to be yet further evidence that QF T cannot be given an underlying
ontology in terms of particles — not even in the supposedly "nice” case of scattering
theory!

« Simply assuming free theories in the asymptotic limit (as done by Wallace) obscures
this situation

« Unclear how many possible choices of detector subalgebras. If several, what could be
criteria to prefer one over the other?



Summary

* No-go theorems show that there cannot be
localisable particles in relativistic Quantum
Theories

« Several attempts to bring this together with
the appearances of particles in HEP
experiments

« Construction in AQFT takes scattering theory
directly into account

« Asymptotic particles are not uniquely
determined by just the net of algebras and
state of the field at finite times; a choice of a
class of particle detectors is involved
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